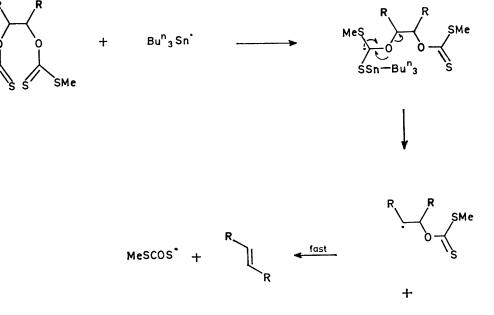

Reactions of Relevance to the Chemistry of Aminoglycoside Antibiotics. Part 11.† Preparation of Olefins from Vicinal Diols

By Anthony G. M. Barrett, Derek H. R. Barton,*^{,†} and Roman Bielski, Department of Chemistry, Imperial College, London SW7 2AY

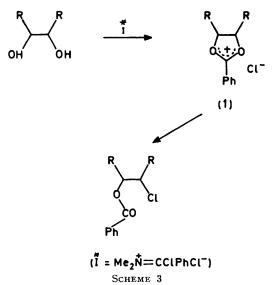
Vicinal diols are converted in high yield into olefins by reaction of the derived bisdithiocarbonates with tri-n-butyl-stannane in toluene or benzene. The stereochemistry of reaction is consistent with a stepwise radical fragmentation.


RECENTLY, carbohydrate esters containing the thiocarbonyl group have found application in novel mild procedures whereby hydroxy-functions may be selec-

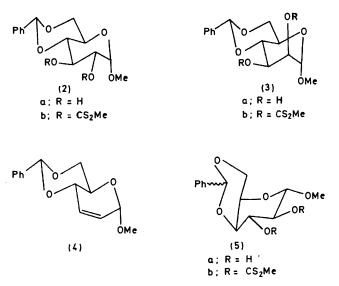
tively replaced by hydrogen ¹ or halides.^{2,3} For example, the reaction of O-alkyl-S-methyldithiocarbonates (xanthates) with methyl iodide gave the iodoalkane and di-S- reduction of xanthates with tri-n-butylstannane gave the deoxy-compound *via* a radical fragmentation (Scheme 1). Substitution in the β -position of the intermediate alkyl radical by a good radical leaving group should permit the synthesis of alkenes. Herein is described the conversion of vicinal diols into alkenes by the radical fragmentation of the derived bis-xanthates (Scheme 2).⁴

Attempts to prepare bisthioxobenzoates from vicinal diols using the Vilsmeier reagent $(Me_2^{N}=CCIPhCl)$ were unsuccessful due to formation of 1,2-chlorobenzoates via the cation (1) (Scheme 3).⁵ Since the preparation of xanthates proceeds via anionic intermediates, species analogous with the cation (1) cannot be formed. Consistent with this and literature precedent,^{3,6} a series of carbohydrate diols (2a), (3a), (5a), and (7a) were converted into the bis-xanthates (2b), (3b), (5b), and (7b), respectively, using sodium hydride (catalysed by imidazole), carbon disulphide, and methyl iodide in sequence in tetrahydrofuran (THF), as detailed previously ¹ for monoxanthates. Formation of the bis-xanthates was consistent with spectra and microana-

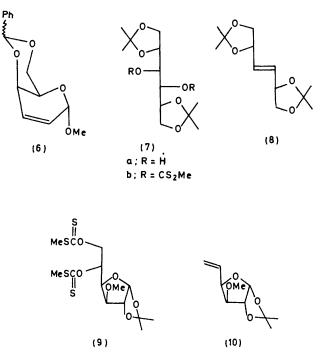
Bun₃SnSCOSMe

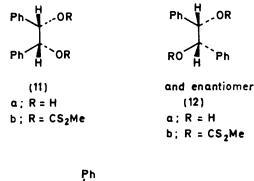

Scheme 2

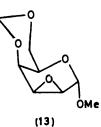
methyldithiocarbonate via S-methylation followed by $S_N 2$ displacement by iodide anion. Alternatively,


† Part 10, D. H. R. Barton, G. Lamotte, W. B. Motherwell, and S. C. Narang, J.C.S. Perkin I, 1979, 2030.

lytical data. The D-glucose derivative (2b) had physical properties in agreement with literature values.⁶


‡ Present address: Institut de Chimie des Substances Naturelles, 91190 Gif-sur-Yvette, France. Reflux of each bis-xanthate with tri-n-butylstannane in toluene or benzene gave the corresponding olefin in good yield. Chromatography was necessary to remove tin compounds and minor by-products. The alkene (10) prepared by $Bu_3^{n}SnH$ reduction of the known³ bisxanthate (9) required purification by chromatography on silica impregnated with silver nitrate. Structural assignments of all the alkenes [(4), (6), (8), and (10)]


obtained were consistent with spectral and literature data (see Experimental section). The mannitol derivative (8) was obtained only as the E-isomer. In order to study further the stereochemistry of reduction, both



(meso)- and (\pm) -hydrobenzoin bis-xanthates (11b) and (12b) were prepared, fully characterised, and subjected to reduction with Buⁿ₃SnH. In each case only (*E*)stilbene was observed. Clearly, both the preference for *E*-stereochemistry and the formation of alkene (4) from both bis-xanthates (2b) and (3b) were consistent with the stepwise radical fragmentation (Scheme 2). The reaction has recently been applied to kanamycin- and butirosin-derived antibiotics.⁷

Alternative procedures exist for transformations of vicinal diols to alkenes. The classical Tipson-Cohen reaction ⁸ (NaI-Zn-DMF on diol bis-alkyl- or -aryl-sulphonates) is often unsuccessful. This is due to difficulty in the initial $S_N 2$ displacement by iodide due to steric and stereoelectronic factors. The reaction is notably less suitable for the diols (2a) and (3a) than for the β -anomers.⁹ The Corey-Winter reaction (trialkyl-phosphine on cyclic diol thioxocarbonate) requires prolonged reaction at high temperature (≥ 135 °C) but is stereospecific.¹⁰ Biscyclo-octa-1,5-dienylnickel is an

alternative reagent to the phosphine.¹¹ Electrophilic conditions (e.g. Ac₂O-heat on cyclic diol orthoesters or amides) reduce the synthetic usefulness of the Eastwood procedure.¹² Recently ¹³ Hanessian has improved this alkene preparation by treating 2-dimethylamino-1,3dioxolans with methyl iodide. The use of n-butyl-lithium makes the Whitham¹⁴ procedure (BuⁿLi on 2-phenyl-1,3-dioxolans) inapplicable to many substrates. Sharpless has deoxygenated vicinal diols cisstereospecifically using potassium hexachlorotungstate(IV).¹⁵ Recently Lythgoe has detailed the stereoselective synthesis of *E*-alkenes by reduction of β acyloxysulphones with sodium amalgam.¹⁶ β-(Methylthio)thiocarbonyloxysulphones and tri-n-butylstannane were reported to give *E*-alkenes; details are yet to be published. The bis-xanthate method herein described readily provides alkenes at low temperatures under mild neutral conditions using inexpensive reagents and, as such, should find application.

EXPERIMENTAL

General experimental conditions have been described previously.¹ Vicinal bisdithiocarbonates were prepared from the diol, sodium hydride, imidazole, carbon disulphide, and methyl iodide.¹ Data for compounds (2b) and (6) reported in our preliminary communication 4 have been corrected.

Methyl 4,6-O-Benzylidene-2,3-di-O-[(S-methylthio)thiocarbonyl]-a-D-glucopyranoside (2b).-This was obtained (yield 4.38 g, 95%) from the diol (2a) (2.82 g), m.p. 98-101° (from aqueous ethanol) (lit., 6 99-100.5°), $[\alpha]_{D}^{23}$ -19° $(c \ 2.5) \ (lit., ^{6} - 18^{\circ}).$

Methyl 4,6-O-Benzylidene-2,3-di-O-[(S-methylthio)thiocarbonyl]-a-D-mannopyranoside (3b).-This was obtained (yield 435 mg, 94%) from the diol (3a) (282 mg), m.p. 167-169°, $[\alpha]_D^{23} - 27^\circ$ (c 1.0), ν_{max} (CHCl₃) 1 370, 1 070, and 970 cm⁻¹, λ_{max} 280 nm (ε 14 800), τ (CCl₄) 2.72 (5 H, s, aryl-H), 3.7—4.02 (2 H, m, 2- and 3-H), 4.47 (1 H, s, PhCH), 5.21 (1 H, m, 1-H), 5.6-6.38 (4 H, m, 4-, 5-, 6-, and 6'-H), 6.56 (3 H, s, OMe), and 7.39 and 7.46 (6 H, 2s, SMe), m/e 370 (Found: C, 46.75; H, 4.8. C₁₈H₂₂O₆S₄ requires C, 46.7; H, 4.8%).

Methyl 4,6-O-Benzylidene-2,3-di-O-[(S-methylthio)thiocarbonyl]-a-D-idopyranoside (5b).-The diol (5a) (141 mg) methyl 2,3-anhydro-4,6-O-benzylidene- α -D-talofrom pyranoside (13) and alkali¹⁷] gave the bisdithiocarbonate (5b) (195 mg, 84%), m.p. 145-146.5° (from aqueous ethanol), $\left[\alpha\right]_{D}^{23} + 154^{\circ}$ (c 0.7), ν_{max} (CHCl₃) 1 160, 1 135, 1 110, and 1 050 cm⁻¹, λ_{max} 283 nm (ε 22 300), τ (CDCl₃) 2.58 (5 H, m, aryl-H), 4.0-4.5 (3 H, m, 2- and 3-H and PhCH), 5.04 (1 H, s), 5.6-6.16 (4 H, m), 6.6 (3 H, s, OMe), and 7.47 and 7.68 (6 H, 2s, SMe), m/e 355 (Found: C, 46.85; H, 4.8. C₁₈H₂₂O₆S₄ requires C, 46.7; H, 4.8%).

1,2;5,6-Di-O-isopropylidene-3,4-di-O-[(S-methylthio)thiocarbonyl]-D-mannitol (7b).-The diol (7a) (475 mg) gave the bisdithiocarbonate (7b) (721 mg, 90%), m.p. 82-84.5° (from aqueous ethanol), $[\alpha]_D^{23} + 101^\circ$ (c 2), ν_{max} (CHCl₃), 1 420, 1 220, and 1 045 cm⁻¹, λ_{max} 280 nm (ε 23 300), τ (CCl₄) 3.75 (2 H, m, 3- and 4-H), 5.86 (2 H, m, 2- and 5-H), 6.01— 6.21 (4 H, m, 1-, 1'-, 6-, and 6'-H), 7.4 (6 H, s, SMe), and 8.66 and 8.74 (12 H, 2 s, CMe_2), m/e 427 (Found: C, 43.5; H, 5.9. $C_{16}H_{26}O_6S_4$ requires C, 43.4; H, 5.9%).

(meso)-1,2-Di-[(S-methylthio)thiocarbonyloxy]-1,2-di-

(11b).-(meso)-1,2-Diphenylethane-1,2-diol phenylethane (11a) (315 mg) gave the bisdithiocarbonate (11b) (347 mg, 60%), m.p. 151–154° (from aqueous ethanol), $\nu_{max.}$ (CHCl₃) 1 420, 1 215, 1 050, and 925 cm⁻¹, λ_{max} , 280 nm (ε 21 700), τ (CCl₄) 2.88 (10 H, m, aryl-H), 3.1 (2 H, s, CH), and 7.48 (6 H, s, SMe), m/e 287 (Found: C, 55.1; H, 4.6. C₁₈H₁₈-O₂S₄ requires C, 54.75; H, 4.6%).

 (\pm) -1,2-Di-[(S-methylthio)thiocarbonyloxy]-1,2-diphenylethane (12b).— (\pm) -1,2-Diphenylethane-1,2-diol (12a) (76) mg) gave bisdithiocarbonate (12b) (77 mg, 55%), m.p. 119–120°, ν_{max} (CHCl₃) 1 420 1 200, 1 035, and 925 cm⁻¹, 280 nm (ϵ 19 400), τ (CCl₄) 2.86 (10 H, s, aryl-H), 3.08 $\lambda_{ma_{\underline{x}}}$ (2 H, s, CH), and 7.46 (6 H, s, SMe), m/e 287 (Found: C, 54.6; H, 4.55%).

Methyl 4,6-O-Benzylidene-2,3-dideoxy- α -D-erythro-hex-2enopyranoside (4).—Tri-n-butylstannane (1.2 g) and the bisdithiocarbonate (2b) (231 mg) in dry toluene (15 ml) were heated to reflux overnight, cooled, washed with aqueous potassium hydroxide, dried $(MgSO_4)$, and evaporated. Chromatography on silica (diethyl ether-light petroleum gradient) and crystallisation from ethanol gave the alkene (4) (74 mg, 60%), m.p. $115-117^{\circ}$ (lit.,¹⁸ 112-120°), $[\alpha]_{\rm p}$ $+135^{\circ}$ (c 1.0) (lit., ¹⁸ 129°). The epimeric bisdithiocarbonate (3b) (128 mg) gave the same alkene (4) (54 mg, 79%), m.p. 115—117°, $[\alpha]_{\rm D}$ +130°.

Methyl 4,6-O-Benzylidene-2,3-dideoxy-a-D-threo-hex-2enopyranoside (6).—The bisdithiocarbonate (5b) (185 mg) and tri-n-butylstannane, treated as above, gave the alkene (6) (49 mg, 49%), m.p. 158-160° (from ethanol) (lit.,¹⁹ 163-164°), $[\alpha]_{D}^{23} - 105^{\circ}$ (c 0.7) (lit., ¹⁹ - 130°).

1,2;5,6-di-O-isopropylidenehex-3-(E)-enc-D-threo-1,2,5,6tetraol (8).-Reaction of the bisdithiocarbonate (7b) (265 mg) and tri-n-butylstannane in toluene gave the E-alkene (8) (89 mg, 65%), m.p. 78-80° (from aqueous ethanol) (lit., 8 80-82°), $[\alpha]_{D}^{23}$ +51° (c 0.7) (lit., 8 57.5°).

5,6-Dideoxy-1,2-O-isopropylidene-3-O-methyl-a-D-xylohex-5-enofuranose (10).—The bisdithiocarbonate (9)³ (250 mg) and tri-n-nutylstannane (1.5 g) in benzene (15 ml) were heated to reflux for 60 h. Normal work-up and chromatography on silver nitrate-silica (1:19) (benzene-light petroleum gradient) gave the alkene (10) (75 mg, 62%), b.p. 101° at 5 mmHg (lit.,²⁰ 80° at 2 mmHg), $[\alpha]_{D}^{23} - 44^{\circ}$ (c 1.0 ethanol) (lit., 20 - 43°), identical with authentic material.³

(E)-Stilbene.—The (meso)-bisdithiocarbonate (11b) (394 mg) and tri-n-butylstannane in toluene gave (E)-stilbene (130 mg, 72%), m.p. 123-124° (from ethanol) (lit.,²¹ 124°). The (\pm) -isomer (12b) also gave (E)-stilbene (77%), m.p. 123—124°. (Z)-Stilbene was not detected.

We thank Professor L. N. Owen for several carbohydrate derivatives and Dr. S. W. McCombie for preliminary results.

[8/1876 Received, 26th October, 1978]

REFERENCES

¹ D. H. R. Barton and S. W. McCombie, J.C.S. Perkin I, 1975, 1574.

² D. H. R. Barton and R. V. Stick, J.C.S. Perkin I, 1975, 1773. ³ D. H. R. Barton, R. V. Stick, and R. Subramanian, J.C.S.

Perkin I, 1976, 2112.

⁴ A. G. M. Barrett, D. H. R. Barton, R. Bielski, and S. W. McCombie, J.C.S. Chem. Comm., 1977, 866. ⁵ T. G. Back, D. H. R. Barton, and B. L. Rao, J.C.S. Perkin

I, 1977, 1715.

⁶ A. K. Sanyal and C. B. Purves, Canad. J. Chem., 1956, 34, 426.

7 T. Hayashi, T. Iwaoka, N. Takeda, and E. Ohki, Chem. Pharm. Bull., 1978, 26, 1786.

- ⁸ H. L. Slates and N. L. Wendler, J. Amer. Chem. Soc., 1956, 78, 3749; R. S. Tipson and A. Cohen, Carbohydrate Res., 1965, 1, 338.
- ⁹ T. Yamazaki, K. Matsuda, H. Sugiyama, S. Seto, and N. Yamaoka, J.C.S. Perkin I, 1977, 1981.
 ¹⁰ E. J. Corey and R. A. E. Winter, J. Amer. Chem. Soc., 1963, 85, 2677.
 ¹¹ M. F. Semmelhack and R. D. Stauffer, Tetrahedron Letters, 1000 Core
- 1973, 2667.

¹² F. W. Eastwood, K. J. Harrington, J. S. Josan, and J. L. Pura, *Tetrahedron Letters*, 1970, 5223; J. S. Josan and F. W. Eastwood, *Austral. J. Chem.*, 1968, **21**, 2013; T. van Es, *Carbo*-

hydrate Res., 1967, 5, 282. ¹³ S. Hanessian, A. Bargiotti, and M. LaRue, Tetrahedron Letters, 1978, 737.

14 J. N. Hines, M. J. Peagram, G. H. Whitham, and M. Wright, Chem. Comm., 1968, 1593.

¹⁵ K. B. Sharpless and T. C. Flood, J.C.S. Chem. Comm., 1972, 370.

¹⁶ P. J. Kocienski, B. Lythgoe, and S. Ruston, J.C.S. Perkin I, 1978, 829.

¹⁷ E. Sorkin and T. Reichstein, Helv. Chim. Acta, 1945, 28, 1; B. Capon, W. G. Overend, and M. Sobell, Tetrahedron, 1961, 16,

- 106.
 ¹⁸ F. H. Newth, J. Chem. Soc., 1956, 471.
 ¹⁹ R. U. Lemieux, E. Fraga, and K. A. Watanabe, Canad. J.
 ¹⁰ R. U. Lemieux, E. Fraga, and K. A. Watanabe, Canad. J.
- ²⁰ J. S. Josan and F. W. Eastwood, Carbohydrate Res., 1968, 7,

 161.
 ²¹ ' I. Heilbron's Dictionary of Organic Compounds,' Volume 5, Volume 5, 1965 p. 2919. Eyre and Spottiswoode, London, 1965, p. 2919.